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A new method is described for calculating several of the extreme eigensolutions of large 
real non-symmetric matrices. The matrices considered are assumed to have real eigenvectors 
and eigenvalues. An algorithm is presented for both single and multiple vector optimization. 
The effkiency of the two versions are compared using some test calculations. The method is a 
generalization of the Davidson-approach. 

1. INTRODUCTION 

The calculation of the lowest (highest) eigenvalues and the corresponding eigen- 
vectors of large real symmetric matrices has in recent years been extensively studied. 
Accordingly solution of very large real symmetric eigenvalue problems, which occur 
frequently in connection with configuration interaction studies of many-body 
correlations, has become a matter of routine. 

Essentially two iterative approaches have been used for computer implementation. 
One is based on the method of coordinate relaxation (CR) which was proposed by 
Nesbet [ I] and later improved by Shavitt [2] including the root shifting technique by 
Shavitt et al. [3] to be used for calculating several of the extreme eigensolutions. 
Recently Raffenetti [4] has developed a new modified CR algorithm in which coor- 
dinates for several eigenvectors are relaxed simultaneously (SCR). In comparison 
with previous CR-schemes the algorithm provides a significant improvement in the 
rate of convergence. This feature is in particular marked when calculating eigen- 
solutions corresponding to degenerate or near degenerate roots. 

The expansion method developed by Davidson [5] represents the alternative 
method. The characteristic feature of this method is, that it automatically keeps 
different eigenvectors orthogonal by diagonalizing an intermediate matrix of small 
dimension defined on a small “optimal” set of basis vectors. As a consequence it is 
found that near degeneracy of the eigenvalues does not lead to significant changes in 
the convergence rate. In addition the method has the advantage of not requiring the 
matrix to be stored in a specific mode on external files. This is of particular impor- 
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tance for large dimensional matrices for which the elements have not been obtained in 
a specific order. Which of the two approaches is most appropriate, however, seems to 
depend strongly on the structure of the actual matrix considered. 

Methods for calculating the extreme eigensolutions of large non-Hermitian matrices 
have been studied much less. In several problems of physical and chemical interest, 
however, it is necessary to have efficient procedures available for that purpose. One 
example is in configuration interaction studies using non-orthogonal basis states using 
a biorthonormal representation (Norbeck and McWeeny [6]). Another is in the study 
of excited states using the so-called random phase approximation (RPA) or time- 
dependent Hartree-Fock theory (TDHF) (see, e.g., Oddershede [7]). Usually the 
problem is solved in practice by transforming the eigenvalue problem into inter- 
mediate Hermitian forms (Jorgensen and Linderberg [8]). In this approach to the 
problem the computational effort involved increases very rapidly with the order of the 
matrix due to the very time consuming full diagonalization and subsequent transfor- 
mation required. As a consequence the applicability of the method is practically 
useful only when the dimensionality of the matrix is relatively small. 

In order to overcome these difficulties Bender and Shavitt [9], Nisbet [lo] and 
recently Flament and Gervais [ 111 have investigated the possibility of solving the 
eigenvalue problem 

MC = ISC (1) 

iteratively by applying a generalization of the method of coordinate relaxation. In 
Eq. (l), M is restricted to be a non-symmetric matrix having both real eigenvalues, L, 
and eigenvectors C. S is a real positive defmite metric matrix. The algorithms used in 
[9] and [IO] were essentially based on a modification of the original Shavitt and 
Nesbet procedure [2] and considered only calculation of the lowest root. These 
authors found that the convergence properties were dependent on the eigenvalues, A, 
being well separated from the ratio M,,/s,, of the diagonal elements of M and S. 

In the study of the equation of motion problem Flament and Gervais [ 1 l] 
considered the calculation of several of the lowest eigensolutions of the RPA 
equations using a modified version of the method of optimal relaxation (MOR [3]). 
As pointed out by the authors convergence problems may arise in the case of almost 
degenerate roots. In addition the rate of convergence for roots above the lowest was 
found to decrease rapidly. In the test example given by the authors 142 iterations 
were required for calculating the third eigensolution compared with 12 and 42 for the 
first and second, respectively. 

Matrices of very large dimension must be kept on external storage in case they are 
not extremely sparse. As a consequence a dominant part of the computation time 
required for diagonalizing such matrices is associated with the process of retrieving 
the matrix. Therefore the modified MOR procedure does not seem suited for 
calculating efficiently more than at most the first two or three eigensolutions. 
Basically the problem appears to be the same as found in the case of real symmetric 
matrices, namely, to keep higher eigenvectors properly related to lower solutions 
already calculated. 
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In the following section we describe an alternative iterative procedure for 
calculating several of the lowest (or highest) eigensolutions of a large real non- 
symmetric matrix in an attempt to overcome the drawbacks of the previous methods. 
As in Eq. (1) the matrix is assumed to have real eigenvalues and eigenvectors. For 
convenience the metric matrix in Eq. (1) is a unit matrix. The procedure, however, is 
readily modilied to handle the general case. Essentially the method is a generalization 
of the expansion method developed by Davidson [5]. In Section 2 we outline the 
procedure and in Section 3 a series of test calculations are described and discussed. 

2. PRESENT APPROACH 

Let I’, denote the total n-dimensional vector space spanned by the n orthonormal 
unit vectors ei, i = 1,2 ,..., n, consisting of the components e;(j) satisfying ei(j) = 6, 
(1 < i < n, 1 <j < n), where 6, represents the usual Kronecker delta. Contained in V, 
we define an m-dimensional subspace V,,, (1 < m < n), spanned by a set of m 
orthonormal n-dimensional vectors 

{ Qil i = 1, 2 ,..., m; Qi . Qj = S,}. 

Assume in the following M is a real square matrix of order n having real eigen- 
solutions. The problem to be studied is now to determine an optimal subspace V, in 
such a way that the lowest k eigensolutions of the equation 

MC, = 2, C,, I= 1, 2,..., k (2) 

can be expressed in the form 

C,= 5 Q,aj;I', Qi E Vm* 
i=l 

This problem can be solved iteratively. In order to initialize the process we follow 
Ref. [5] and choose a set of m orthonormal basis vectors {Q,, Q, ,..., Q,}, k < m, in 
such a way that the corresponding space, V,, contains the dominant parts of the 
lowest k eigenvectors. Usually it is done by finding the m lowest diagonal elements 
MI,,, G qr, G - * * G 4,,, and setting Q, = eli for i = 1, 2,..., m. The first approximate 
solutions of Eq. (2) are then obtained within the subspace V,,, by solving the small 
eigenvalue problem 

where 

lppoa(m) =a(m)a(m) 7 (4) 

M:“’ = Q,? MQj (i,j = 1, 2,..., m), (5) 
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and L(“‘) is an m-dimensional diagonal matrix containing the approximate eigenvalues 
of Eq. (2). 

It should be noted that the set of eigenvectors aim’ in acm’ does not necessarily 
constitute an orthonormal set. For general eigenvalue problems as Eq. (4) the right 
eigenvectors ai*) are orthogonal with respect to the left eigenvectors ,jrn) (i #;j), 

b(*,M(*, =a(m)b(m) 9 (6) 

and are usually normalized according to the biorthogonality relation 

b(m) . gem) = 1 , (7) 

with 1 being a unit matrix. A detailed discussion of orthonormality of eigenvectors 
for non-Hermitian matrices is found in Ref. [ 121. For convenience, however, we 
choose to normalize separately each of the eigenvectors aim’ to unity 

Cm) 
ai . ai*’ = 1 7 i = 1, 2 ,..., m. (8) 

Due to the fact that m (k < m < n), is a relatively small number Eq. (4) can be solved 
readily by application of standard procedures. 

The next step in the method is to extend the dimensionality of the subspace, V,, by 
adding to the set a new “optimal” vector Q,, r . Assuming we are solving Eq. (2) for 
the Hh root (I= 1, 2,..., k), the vector should be chosen as the “best” correction vector 
for the current estimate of the Ith eigenvector given by 

C{“‘= -f Q,ai,“‘. 

i=l 
(9) 

The rate of convergence depends strongly on the choice of correction vector. Only an 
approximate vector can be obtained directly, however. Requiring (as in the original 
work by Nesbet [ 11) the following set of equations (i = 1,2..., n) to be satisfied for 
the ith component only 

M(cj”’ + wjm’(i) ei) = A!;“‘(cj”’ + w!“‘(i) ei) (10) 

we obtain the following n equations for determining the parameter wjm’(i) 

wjm’(i) = R~m’(k)/(lj~)bki - Mki), k = 1, 2 ,..., n, (11) 

with Rim’(k) being the kth component of the current residual vector 

RI”’ = (M - A!?’ 1) C;“’ (12) 

for Cl”’ normalized to unity (cf. Eqs. (8) and (9)). 
Equation (11) can only be satisfied for all k = 1, 2,..., n for RI”’ being the zero 
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vector (i.e., Cl”’ is an exact eigenvector). An approximate set of parameters w:“‘(i), 
i = 1, 2,..., n, can be obtained, however, by choosing k = i in Eq. (11) giving 

wjm’(i) = Rj”‘(i)/(Aj;t’ - Mii). (13) 

as in the case of symmetric matrices [ 1,5]. 
Letting wjrn) represent the vector (wjm’(l), wjm)(2),..., wjm’(n)) we obtain Q,, , by 

orthonormalizing wirn) onto V, as 

m 

Q’ m+l= wjm) - -& (wlm) . QJ Q,c, (14) 

Q m+l =Qin+~/llQin+~Il* (15) 

The procedure is now cyclically repeated starting with solving the analog of Eq. (4) 
with m + 1 replacing m. 

In case the dimensionality of the matrix M (m) becomes inconveniently large the 
process is restarted using as initial subspace the space Vk spanned by the current 
approximate k eigenvectors from Eq. (9). The new set of basis vectors in V, is then 
obtained by applying a Schmidt orthonormalization to the full set of basis vectors. 

The iterations are terminated when the process has converged for a specific root. 
This is most easily tested by requiring the norm of the residual vector to be less than 
a certain fixed threshold, e.g., ]],I”’ (1 < T. If several eigensolutions are desired the 
iterations are continued on the remaining roots. 

The proper relationship between the eigenvectors are preserved due to the matrix 
diagonalization in Eq. (4). This represents a significant advantage compared with 
previous methods. In these the eigenvalues are estimated by considering the 
generalized Rayleigh quotient. It requires simultaneous knowledge of both right and 
left eigenvectors. In the present approach only right eigenvectors need be considered. 

If several eigensolutions are desired the idea due to Raffenetti [4] of optimizing 
simultaneously several vectors is easily incorporated in the present scheme. It is done 
by calculating each time the matrix is read from external storage all the residual 
vectors corresponding to the k solutions wanted. The additional set of k correction 
vectors Q,,,, Qm+2,..., Qm+k, is obtained using Eqs. (12~( 13) followed by a 
Schmidt orthonormalization of the resulting vectors wim), wim),..., wim’, onto the space 
V, using Eqs. (14)-(15). The process is then continued as in the case of a single 
correction vector by solving Eq. (4) with m + k replacing m. 

3. COMPUTATIONALRESULTS 

The methods outlined above have been implemented on an IBM 3033. In order to 
reduce the amount of input/output operations the trial vectors are all kept in core and 
only the matrix resides in external storage. The convergence properties of the 
procedures have been studied by carrying out a series of test calculations using 
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different matrices. In all studied cases no convergence problems did occur neither in 
connection with degenerate roots nor for calculation higher subdominant eigen- 
solutions. 

In order to faciliate comparison we describe in the following a series of 
calculations which have been performed using the same non-symmetric matrix of 
dimension 529. This particular matrix was obtained as (A - B) (A + B), where A 
and B are the two square matrices (in casu 529 by 529) entering the RPA equations 
[7,8, 131, and where the actual matrix elements were computed for the molecule 
trans-cyclooctene in a minimal basis atomic set [ 131. The resulting non-Hermitian 
matrix is known to have real eigensolutions. 

In all calculations the starting dimension of the subspace was chosen to be equal to 
the final number of solutions desired and the same dimension was used when the 
subspace was truncated. The convergence criterium was set to T = lo-‘. 

In the first series of calculations the single vector optimization algorithm is used 
starting from the lowest root calculating successively higher solutions. Table I shows 
the number of iterations required for obtaining the five lowest roots for various 
choices of the maximum dimension of the subspace, P. Essentially it demonstrates the 
drastic reduction in the number of iterations when P is increased. This is in particular 
marked when calculating higher roots. 

Table II shows the equivalent results obtained when utilizing the multiple vector 
optimization method. In this case we observe a similar behaviour as in the first series 
of calculations. The most important result, however, is that the matrix is now only 
required very few times. For example for P = 30 it is only necessary to read the 
matrix 13 times from external storage. 

In order to investigate the possibility of obtaining also higher roots using the 
multiple vector optimization method we carried out a calculation of the 10 lowest 
roots of the same matrix with P = 30 and T= 10p5. The number of iterations 

TABLE I 

The Number of Iterations Required for Obtaining the Five Lowest Eigensolutions Using Single Vector 
Optimization as a Function of the Maximum Dimension of the Subspace 

Maximum 
dimension 

of 
subspace 

P 

Iterations per root Total No. of 
No. of times matrix 

1 2 3 4 5 iterations is required 

8 14 14 15 133 124 300 300 
10 12 10 11 59 51 143 143 
15 11 9 9 41 42 112 112 
20 11 9 7 33 21 81 81 
25 11 7 8 27 18 71 71 
30 11 7 6 28 19 71 71 
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Table II 

The Number of Iterations Required for Obtaining the Five Lowest Eigensolutions Using Multiple Vector 
Optimization as a Function of the Maximum Dimension of the Subspace 

Maximum 
dimension 

of 
subspace 

P 

Iterations per root Total No. No. of 
of times matrix 

1 2 3 4 5 iterations is required 

10 14 3-l 15 24 107 197 107 
15 10 14 11 15 16 66 16 
20 9 11 10 12 15 57 15 
25 9 10 10 12 15 56 15 
30 9 10 9 12 13 53 13 

required per root was found to be respectively 9, 14, 9, 11, 12, 17, 14, 28, 17, 31, 
which implies that the matrix was only read from external storage 31 times. The CPU 
time used was approximately 15 times less than the time used when applying the 
standard method [8]. Finally we conclude that the present method maintains the fast 
convergence rate also in calculating relatively many of the subdominant roots. In 
addition the method requires only a limited amount of input/output processing. 

At present a version of the method is being developed which utilizes directly the 
specific form of the RPA equations [ 141. 
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